
Putting Data in the Driver’s Seat:
Optimizing Earnings for On-Demand Ride-Hailing

Harshal A. Chaudhari

Boston University

harshal@cs.bu.edu

John W. Byers

Boston University

byers@cs.bu.edu

Evimaria Terzi

Boston University

evimaria@cs.bu.edu

ABSTRACT

On-demand ride-hailing platforms like Uber and Lyft are helping

reshape urban transportation, by enabling car owners to become

drivers for hire with minimal overhead. Although there are many

studies that consider ride-hailing platforms holistically, e.g., from

the perspective of supply and demand equilibria, little emphasis

has been placed on optimization for the individual, self-interested

drivers that currently comprise these fleets. While some individu-

als drive opportunistically either as their schedule allows or on a

fixed schedule, we show that strategic behavior regarding when

and where to drive can substantially increase driver income. In this

paper, we formalize the problem of devising a driver strategy to

maximize expected earnings, describe a series of dynamic program-

ming algorithms to solve these problems under different sets of

modeled actions available to the drivers, and exemplify the models

and methods on a large scale simulation of driving for Uber in

NYC. In our experiments, we use a newly-collected dataset that

combines the NYC taxi rides dataset along with Uber API data, to

build time-varying traffic and payout matrices for a representative

six-month time period in greater NYC. From this input, we can

reason about prospective itineraries and payoffs. Moreover, the

framework enables us to rigorously reason about and analyze the

sensitivity of our results to perturbations in the input data. Among

our main findings is that repositioning throughout the day is key

to maximizing driver earnings, whereas ‘chasing surge’ is typically

misguided and sometimes a costly move.

ACM Reference Format:

Harshal A. Chaudhari, John W. Byers, and Evimaria Terzi. 2018. Putting

Data in the Driver’s Seat: Optimizing Earnings for On-Demand Ride-Hailing.

In WSDM 2018: 11th Eleventh ACM International Conference on Web Search
and Data Mining, February 5–9, 2018, Marina Del Rey, CA, USA. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3159652.3159721

1 INTRODUCTION

The proliferation of on-demand ride-hailing platforms like Lyft

and Uber has begun to fundamentally change the nature of urban

transit. In the last two years alone, the number of daily trips using

ride-hailing platforms like Uber and Lyft in NYC has grown five-

fold, to about 350,000 trips per day. Today, over 65,000 drivers

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00

https://doi.org/10.1145/3159652.3159721

drive on the streets of NYC as Uber or Lyft drivers. The explosive

growth of these ride-hailing platforms has motivated a wide array

of questions for academic research at the intersection of computer

science and economics, ranging from the design of effective pricing

mechanisms, to equilibrium analysis, to the design of reputation

management systems for drivers, to algorithms for matching drivers

with customers, as we discuss in our related work section.

While these studies consider the study of ride-hailing platforms

holistically, little work has been done on optimizing strategies for

individual drivers. Nevertheless, the challenge of how to maximize

one’s individual earnings as a driver for a ride-hailing platform

like Uber or Lyft is a pressing question that millions of micro-

entrepreneurs across the world now face. Anecdotally, many drivers

spend a great deal of time strategizing about where and when

to drive. However, drivers today are self-taught, using heuristics

of their own devising or learning from one another, and employ

relatively simple analytics dashboards such as SherpaShare. Indeed,

rumors suggest that some drivers even collude in attempts to induce

spikes in surge prices that they can then exploit. But in terms of

concrete guidance, to date, there are only articles in the popular

press and on blogs that offer (often contradictory) advice to ride-

hailing drivers how to maximize their earnings [8, 10, 19].

In this paper, we formalize the problem of devising a driver

strategy to maximize expected earnings and describe a series of

dynamic programming algorithms to solve this problem under dif-

ferent sets of modeled actions available to the drivers. Our strategies

take as input a detailed model of city-level data that constitutes a

fine-grained weekly projection of forecasted demand for rides, com-

prising predicted spatiotemporal distributions of source-destination

pairs, driver payments, transit times, and surge multipliers. The

optimization framework we propose not only produces contin-

gency plans in the form of highly optimized driving schedules and

real-time in-course corrections to drivers, but also enables us to

rigorously reason about and analyze the sensitivity of our output

results to perturbations in the input data. Thus, we can justify the

proposed strategies even under an uncertainty level in the collected

data and the data model itself.

We then exemplify our results with a large-scale simulation of

driving for Uber in NYC. For this simulation, we assemble a new

dataset that uses both the publicly available NYC taxi rides dataset
1

as well as calls to the Uber API. From the former, we obtain informa-

tion about over 200,000 taxi rides that occurred between different

NYC zones. From the latter, we obtain representative pricing and

traffic-time information for those trips, were they to reoccur on

Uber. From this dataset, we construct a mathematical model to

produce input to our algorithms. However, we view the dataset to

1
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

https://doi.org/10.1145/3159652.3159721
https://doi.org/10.1145/3159652.3159721
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

be of independent interest that could subsequently be used for a

multitude of other studies.

Our experiments with our methods on this dataset demonstrate

the following findings. Being strategic about the areas they focus

on picking up riders and the times they work, drivers can signifi-

cantly increase their income, sometimes by as much as 1.5x, when

compared to a naive optimization strategy. Moreover, we show that

a pronounced difference between earnings holds even when there

is large uncertainty in the input data. We argue that our results

are therefore not purely an artifact of the NYC dataset we employ,

but also have high potential to generalize. Finally, our experiments

show that naively chasing surging prices does not typically lead

to significant earnings gains, but it can actually introduce large

opportunity costs, as drivers waste time driving to subsiding surges.

2 RELATEDWORK

To the best of our knowledge, we are the first to formally address the

problem of optimizing the driver’s strategy in ride-hailing platforms

like Uber and Lyft. Apart from some recent popular-press articles

that offer, often contradictory, advice to ride-hailing drivers on

how to maximize earnings, mostly via chasing surge [8, 10], the

only relevant existing technical work studies other aspects of ride-

hailing. Next, we discuss these works as well as some work related

to optimization problems for taxi fleets.

Studies of ride-hailing platforms: Recent work has investigated

the supply-side effects of specific incentives (e.g., surge pricing) that

Uber and Lyft provide to drivers [20]. For example, Chen and Shel-

don [7] showed a causal relationship that drivers on Uber respond

to surges by driving more during high surge times, differentiating

from previous work that suggests taxi drivers primarily focus on

achieving earnings goals [3]. In another line of research, Chen et
al. [6] measured many facets of Uber in NYC, including the preva-

lence and extent of surge pricing. Hall and Krueger [9] showed that

drivers were attracted to the Uber platform due to the flexibility it

offers, and the level of compensation, but that earnings per hour do

not vary much with the number of hours worked. Finally, Castillo

et al. [4] recently showed that surge pricing is responsible for ef-

fectively relocating drivers during periods of high-demand thereby

preventing them from engaging in ‘wild goose chases’ to pick up

distant customers, which only exacerbates the problem of low dri-

ver availability. These studies perform an a posteriori analysis of the
data, but they do not focus on devising specific recommendations

for drivers as we do.

In another line of work, Banerjee et al. [2] studied dynamic

pricing strategies for ride-hailing platforms (such as Lyft) using

a queuing-theoretic economic model. They showed that dynamic

pricing is robust to changes in system parameters, even if it does

not achieve higher performance than static pricing. More recently,

Ozkan and Ward [17] looked at strategic matching between supply

(individual drivers) and demand (requested rides) for Uber and Lyft.

They showed that matching based on time-varying parameters like

driver and customer arrival rates, and the willingness of customers

to wait can achieve better performance than naively matching

passengers with the closest driver. Although these works build

interesting models for ride-hailing economies, they are orthogonal

to ours, as they take a holistic view of such economies, while we

focus on earnings of individual, self-interested drivers.

Optimization problems for taxi fleets: A considerable body of

work has focused on the optimization of taxi fleets, for example

building economic network models to describe demand and supply

equilibria of taxi services under various tariff structures, fleet size

regulations, and other policy alternatives [1, 22]. Other work seeks

to optimize the allocation of taxi market resources [18]. Another di-

rection focuses on route optimization by a centralized administrator

(e.g., taxi dispatching services) [14, 16] or on maximizing occupancy

and minimizing travel times in a shared-ride setting [12]. Other

work has studied the supply side of the driving market from the

viewpoint of behavioral economics. A seminal paper by Camerer et
al. [3] studied cab drivers and found that inexperienced cab drivers

(1) make labor supply decisions “one day at a time” instead of sub-

stituting labor and leisure across multiple days, and (2) set a loose

daily income target and quit working once they reach that target.

These works, however, do not focus on the design of a specific

gain-optimizing strategy for drivers, as we do.

3 PROBLEM SETUP

In this section, we describe the basics of our problem setup and

provide the necessary notation.

3.1 Modeling the city

Throughout the paper, we will assume that a city is divided into

non-overlapping set of zones denoted by X, and time t runs in
discrete time steps. We represent a city in the form of a complete

weighted directed graph G = (X,E) with |X| = n and |E | =
(n
2

)
edges, where the edge weight on edge e (i → j) corresponds to the

likelihood of a driver currently at location i receiving a ride request
to location j . Additionally, each edge is associated with a travel time

τ (i, j), a travel cost, and a reward r (i, j). In the general formulation

of our problem, all of these edge attributes are time-varying, e.g., the

rewards would vary with t as r t (i, j), but to avoid excess notation,

we drop those superscripts in our following discussion of models

and algorithms, and reintroduce them only in our experiments in

Section 6. These attributes of a city, which we use as an input to

our solver, are specified as follows:

Empirical transition matrix (F): Every edge e (i → j) ∈ E is

associated with a transition probability f (i, j) ∈ [0, 1] such that∑
j ∈X f (i, j) = 1, ∀i ∈ X.
Since the entries of F correspond to probabilities, the weights

give rise to a Markov Chain with a transition matrix F – where

each entry f (i, j) denotes the probability of a passenger in zone i
traveling to zone j. As we disallow trips within the same zone in

our model (an assumption which could be relaxed), we let f (i, i)
denote the probability of a driver not finding a passenger in zone i
at a given time step.

Travel timematrix (T): Every edge e (i → j) ∈ E is also associated

with τ (i, j) > 0, the travel time of a ride from zone i to zone j . These
weights give us a travel time matrix T with entries τ (i, j).

Rewards matrix (R): Every edge e (i → j) ∈ E is also associated

with a real valued reward r (i, j) denoting the net reward for a

driver delivering a passenger from zone i to zone j . The net rewards

include the driver’s share of earnings from a passenger minus the

sundry costs like gas, vehicle depreciation, etc. Since these earnings

and costs vary with mileage and transit time, each entry in the

rewards matrix R is of the form r (i, j) = earnings(i, j) - cost(i, j).
Again, in general, all of the input matrices: F, T and R, are time-

dependent, i.e., their entries could change throughout the day

3.2 Modeling the driver

Our model assumes that each driver comes with a maximum work

budget of B time units, during which the driver can pick up passen-

gers. Depending on the specific setting, the driver can work B time

units consecutively or split them over a finite horizon of N time

units, where N ≥ B. As an example, a driver seeking to optimize

an 8 hour work day over a 24 hour day at a ten-minute decision

granularity (at most six decisions per hour), will have B = 48 and

N = 144.

Home zone (i0): Each driver has a unique home zone denoted by

i0 ∈ X. We always assume that each driver starts from their home

zone and returns to it at the end of each of their shifts.

Driver actions (A): In a driver strategy, whenever faced with a

choice regarding their next decision, a driver has n + 2 possible

actions to choose from:

• Get Passenger (a0): Wait for a passenger in the current zone.

• Go Home (a1): Log out of the on-demand ride service, relocate

to the home zone (if needed) and stop working. This action does

not consume the driver’s budget.

• Relocate (a2 (j)): Relocate to city zone j. This action consumes

the driver’s budget.

Driver policy (π): A driver policy is a sequence of time and location-

dependent actions taken by a driver at different steps of the strategy.

As the total number of actions taken by a driver while exhausting

the budget B depends on the actual actions, the length of a driver

policy π varies.

Each time and location dependent action in π , denoted by a, can
be expressed in form of a 3-tuple – (î, t̂ , â) where â ∈ A refers

to actual action, î ∈ X is the zone at which action was taken and

t̂ ≤ N is the time at which the action was taken. Finally, we use Π
to denote the set of all possible policies.

3.3 Computing driver earnings

In this section, we describe the computation of the expected earn-

ings of a driver who at a specific time t is in zone i and takes action
a. We denote this by E (i, t ,a) and depending on the action a it is

computed as follows.

• For action a0 (Get Passenger), taken inside zone i at time t , the
action earnings function is calculated as an expectation over

possible rides,

E (i, t ,a0) = Fi • Ri (1)

where Fi and Ri denote the i-th rows of F and R respectively.

• For action a1 (Go Home), taken inside zone i at time t , the action
earnings function is simply

E (i, t ,a1) = −cost (i, i0) (2)

where we incur a negative reward due to the absence of a paying

customer.

• Action a2 (j) (Relocate), taken inside zone i at time t , takes the
driver to zone j , i . Therefore, the action earnings function is

E (i, t ,a2 (j)) = −cost (i, j) (3)

where the driver again incurs a negative reward due to the

absence of a paying customer.

3.4 Problem definition

Given input specification matrices F, T and R, as well as the driver’s
budget B, the total expected earnings of the driver with policy π is:

E (π , F,T,R,B) =
∑

(î, t̂, â)∈π

E (î, t̂ , â), (4)

where E (î, t̂ , â) is computed using the Equations (1), (2) and (3).

As we seek to maximize the total expected earnings of the driver,
we aim to solve the following optimization problem.

Problem 1 (MaxEarnings). Given sets of time-evolving F, T and
R, as well as the driver’s budget B, find a π∗ such that:

π∗ = argmax

π ∈Π
E (π , F,T,R,B).

4 DRIVER STRATEGIES AND OPTIMIZATION

ALGORITHMS

We now describe the different driver strategies, which are defined

based on the set of actionsA at the driver’s disposal. We also show

how to optimally solve the MaxEarnings problem in polynomial

time for different sets A.

For the rest of the section, we will denote by Φ(i,b, t) the total
expected future earnings of a driver who is in zone i at time t with
budget b time units remaining. Hence, the total expected earnings
of a driver can be expressed as Φ(i0,B,N).

If a driver at zone i at time t with b budget units remaining

either takes a passenger ride to zone j or relocates to zone j, that
trip ends at time t ′ = t + τ t (i, j) with remaining budget b ′ =
b − τ t (i, j). The total expected future earnings at that point for

the driver is: Φ(j,b ′, t ′). Let v(i,b, t) denotes the vector of such

cumulative earnings across different zones j induced when a driver

takes an a0 action i.e., v(i,b, t) =
[
Φ(j,b ′, t ′)

]
j ∈X

.

We now define the driver strategies as well as the solutions to

the instances of the MaxEarnings problem they induce.

The flexible-relocation strategy: This is the most general strat-

egy where a driver has complete freedom for choices regarding

work schedule as well relocation to different zones. Specifically, a

driver has a budget constraint of B time units to be consumed over

a finite horizon N time units. An idle driver in zone i following this
strategy has following set of available choices,

A = {a0,a1} ∪ {a2 (j) |∀j ∈ X, j , i} (5)

Note that we restrict the Relocate actions to ones which do not

result in t ≥ N or b < 0.

A driver following the flexible-relocation strategy chooses the

action that maximizes total expected earnings. For this strategy,

the solution to the MaxEarnings problem can be found by the

following dynamic programming (DP) recurrence:

Φ(i,b, t) = max

a∈A




Fi (Ri + v(i,b, t)), if a = a0

−cost (i, i0) + Φ(i0,b, t
′), if a = a1

maxj {−cost (i, j) + Φ(j,b
′, t ′)}, if a = a2 (j)

(6)

Each of the O (nNB) entries in the output of this dynamic program

involves consideration of at most O (n) actions. Hence, the solution
to the MaxEarnings problem can be found in O (n2NB) time.

Other strategies: In addition to the general flexible-relocation strat-
egy, we also consider the following three special cases to model

other plausible strategies of ride-hailing drivers: the naive, the relo-
cation and the flexible strategies.

In the naive strategy, a driver performs a random walk over the

city on weekdays from 9AM - 5PM, with locations dictated exclu-

sively by the passengers picked up. At the end of every passenger

ride, the driver waits in the current zone for next passenger pickup.

Hence, the only allowable action is Get Passenger.
In the relocation strategy, an idle driver in zone i has two choices:

Get Passenger and Relocate. Hence, the set of allowable actions for
a driver contains n different actions, one of which is Get Passenger
and (n − 1) Relocate actions, one for each different city zone. Thus:

A = {a0} ∪ {a2 (j) |∀j ∈ X, j , i}. We remove from consideration

the zones where relocating exhausts the budget or where t ≥ N .

In the flexible strategy, a driver has the flexibility to decide work-
ing times, modeling a driver who uses heuristics to decide the most

profitable times to work. As a result, we impose an additional con-

straint of a working time budget B that a driver can split over a finite

horizon of N time units. Thus, this strategy aims to figure out an

optimal in-expectation work schedule for the driver. At any stage, a

driver can log out of the on-demand ride service and return to home

zone. Hence, the set of allowable actions for a driver contains 2

different actions, Get Passenger and Go Home. Thus:A = {a0,a1}. It
is common for drivers to structure their day around a desired target

earning, rather than a time budget. The flexible strategy also natu-

rally computes a schedule that minimizes working time required

for achieving the desired target earning.

Solving MaxEarnings for the naive, the relocation and the flexi-
ble strategies can be done by streamlined versions of the DP pre-

sented in Eq. (6); the details are omitted due to space constraints.

5 MAXIMIZING EARNINGS UNDER

UNCERTAINTY

The primary source of variability in the input of the MaxEarnings

problem is the set of empirical transition matrices F. In a typical

application, we expect that predictive models would be employed

to generate estimates of these matrices based upon observations

from historical data (as we do in our own experiments). Empirically

observed transition matrices may suffer from estimation errors

due to the presence of external confounding factors (e.g., weather,

special events inside the city) while gathering the data. As a result,

the dynamic programming solution to MaxEarnings may also be

sensitive to the transition probabilities. In this section, we address

the question of how the results of the solutions we described in the

previous section change under the assumption that there is some

uncertainty (and thus noise) in the underlying empirical transition

matrices we use as part of our input.

Concretely, we now assume that the empirical transition ma-

trix (F) is generated from an underlying traffic matrix, or count

matrix, recording trips between locations i and j.

Count matrix (C): Every edge e (i → j) ∈ E is associated with an

integer-valued weight c (i, j) that denotes the number of requests

at zone i that had node j as their destination. Then, we compute

frequencies f (i, j) =
c (i, j)∑
k c (i,k)

, for all outbound trips from i .

With this, we now describe how to quantify uncertainty in the

rows of F (and the underlying C, by construction). This will enable

us to modify the MaxEarnings into the RobustEarnings problem

following ideas developed by Nilim and El Ghaoui [15].

Modeling uncertainty: We now assume that there is an underly-

ing true transitionmatrix P, and the questionwe explore is our confi-
dence that the Cwe observe is actually generated by the true transi-

tion matrix P. As before, both P and C are clearly time-dependent in

practice, but for ease of exposition, we ignore the time-dependency

aspect of the problem here.

We consider each row of the true transition matrix and the count

matrix separately; let p and c denote any particular row of P and C
respectively. Following the ideas of Kullback et al. [13], we have a
discriminatory random variable 2Î , which follows a χ2 distribution
with (n − 1) degrees of freedom. Heuristically, 2Î can be considered

as a measure of the “divergence” of c from p. Thus, for c to be in

the (1 − α) (or 100(1 − α)%) confidence interval of p, we need:

Fχ 2

n−1

[
2Î
]
= Fχ 2

n−1


2

n∑
i=1

c(i) log c(i) − 2n logn − 2
n∑
i=1

c(i) log p(i)


= 1 − α ,

where p(i) (resp. c(i)) is the i-th element of vector p (resp. c). In the

above equation, α quantifies the uncertainty that one can tolerate

and is an upper bound on what one believes actually exists in the

set of observations p. Thus, we call α the input uncertainty level.
By setting βmax =

∑n
i=1 c(i) log c(i), we get

n∑
i=1

c(i) log p(i) =
2(βmax − n logn) − F

−1

χ 2

n−1
(1 − α)

2

, (7)

where F
−1

χ 2

n−1
is the inverse of the χ2 cdf. In other words, for all

vectors p for which Equation (7) is satisfied, c is within the (1 − α)-
confidence interval of p.

Thus given C and α , we define the α-feasible matrices Pα to be

the set of true transition matrices such that for every matrix P in

Pα and every row p of P, Equation (7) is satisfied.

The RobustEarnings problem: Our approach is to compute

the worst-case total expected earnings for a driver, by finding the P
among all matrices in Pα such that the total expected earnings of
the driver are minimized. This quantifies the worst-case difference

between the earnings computed as a solution to the MaxEarnings

and the worst-case earnings of the driver, given bounded uncer-

tainty α . We formalized this as the following problem definition:

Evening 5PM Night 10PM

Morning 8AM Noon 12PM

0.25

0.50

0.75

Probability
of
finding
a passenger

Figure 1: Probability of finding a passenger in 10 minutes

across NYC zones at different times of a representative day.

Problem 2 (RobustEarnings). Given sets of time evolving C, T
and R, the driver’s budget B and input uncertainty level α , find π̂
such that:

π̂ = argmax

π ∈Π
min

P∈Pα
E (π , P,T,R,B).

Note that the above problem requires searching among all pos-

sible true transition matrices in Pα , which is a non-enumerable

set. In fact, we can show (details omitted due to space constraints)

that Problem 2 can be solved by enhancing the total expected fu-
ture earnings associated with Get Passenger action in the dynamic-

programming routines we described in Section 4 with an opti-

mization problem. We use an off-the-shelf minimizer to solve this

optimization problem. Alternatively, a bisection algorithm can ap-

proximate this problem within an accuracy δ in O (log(Vmax/δ))
time, where Vmax is the maximum value of the value function [15].

6 DATA AND EXPERIMENTS

We now evaluate our strategies for drivers in practice. First, we

discuss how we collect and combine the appropriate data from mul-

tiple data sources. Then, we perform a comprehensive experimental

study that provides specific insights as to how NYC drivers can

maximize their earnings.

6.1 Data collection and preparation

In order to evaluate our strategies, we need to construct time-

evolving matrices F, T and R as defined in Section 3, and C as

defined in Section 5. For this, we use two data sources: (1) the NYC

taxi rides dataset
2
and (2) information we obtain from the Uber

platform via queries to the Uber API.
3

2
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

3
https://developer.uber.com/docs/riders/ride-requests/tutorials/api/introduction

Forming time-evolving matrices C and F: Our starting point is
the NYC Taxi dataset (2015-2016), which contains yellow street-hail

records of over 200,000 taxi rides per day with fields capturing

pickup and dropoff times, location co-ordinates, trip distances, and

fares. Each taxi record is accompanied with a taxi location ID for

the pick-up and drop-off locations. Each location ID is associated

with one of 29 non-overlapping city zones, as defined in the dataset.

While the set of taxi rides is undoubtedly produced from a different

ridership than Uber, it nonetheless provides a useful baseline that

reflects many of the broader dynamics of ridership demand in NYC.

Given this data, we divide each 24-hour day of the week into

144 time-slices of duration 10 minutes each, indexed by their start

time. To model traffic demand in the city at time t , the c (i, j) entry
of count matrix Ct is the total number of rides from zone i to zone

j in a 30-minute long time window centered at time t . For example,

c (i, j) for the time slot [10:40, 10:50] on a Wednesday is a count

of all rides from i to j that were initiated between 10:30 and 11:00

on any Wednesday in the dataset. Since our model disallows rides

within the same zone, we ignore such rides while populating the

entries of the matrix Ct , resulting in all diagonal entries of the

count matrix being zero.

To populate the entries of the empirical transition matrix Ft , as
defined in Section 3, we must estimate its diagonal entries, which

correspond to the probability of not finding a ride, as well as the

transition probabilities. We derive these from the data as follows.

Assuming that the parameters do not change significantly within a

single time-slice, letN (λ) andN (µ) denote the number of passenger

and driver arrivals in zone i in one time unit, with independent
4

Poisson arrival rates λ and µ respectively. Hence, the random vari-

able K = N (λ) − N (µ) follows a Skellam distribution such that:

Pr[K = k] = e−(λ+µ)
(
λ

µ

)
Ik

(
2

√
λµ

)
where Ik (z) is the modified Bessel function of the first kind [21].

Whenever K < 0, there are more drivers than passengers. We

assume a worst case scenario in which a driver (conceptually) joins

the end of a FIFO queue for that zone. Hence, for k ≤ 0, the driver

has to wait for (|k |+1) passenger arrivals for a successful passenger
pickup. Then, the probability of a successful passenger pickup is:

Pr[N (λ) = |k | + 1] =
λ

(
|k |+1

)
e−λ(

|k | + 1
)
!

.

Thus, we can express a diagonal entry f t (i, i) as follows:

f t (i, i) = 1 −
∑
k≤0

Pr[K = k] × Pr[N (λ) ≥ |k | + 1].

For F to be stochastic, we set every other entry f t (i, j) to:

f t (i, j) = (1 − f t (i, i)) ×
ct (i, j)∑
j ct (i, j)

.

The matrix Ft built in this manner satisfies all our assumptions.

Figure 1 shows an example of varying estimated probabilities

of successful pickups in different zones at various times of the day

derived from the NYC data using the methods above. As expected,

4
Although we assume the independence of the passenger and driver arrival processes,

we can also accommodate correlated processes with slight modification.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://developer.uber.com/docs/riders/ride-requests/tutorials/api/introduction

we see that the probability of a successful pickup is higher outside

Manhattan in the morning, and this trend reverses in the evening.

Forming time-evolving matrices T and R: We obtain informa-

tion regarding travel times and rewards using the estimates/price
endpoint of the Uber API. The API takes longitude and latitude of

pick-up and drop-off locations and returns price estimates for all

types of Uber products – UberX, UberXL and UberBlack – together

with the active surge multiplier rate at the pick-up location at the

time of query. We only focus on UberX, the most popular Uber prod-

uct. We also use the /products API endpoint to get information on

the base fare, minimum fare, cost per minute and cost per unit dis-

tance for UberX. However, none of the Uber API endpoints provide

information about the supply of drivers or demand of passengers;

we impute this information from the NYC taxi rides dataset.

To create a representative sample of the data, we “recreated”

NYC taxi rides virtually on the Uber platform. Using the Uber API,

we were able to take a NYC taxi ride recorded in 2015, and capture

the Uber attributes of that ride exactly one year later, collecting

price estimates and other data above for that virtual ride. To respect

the Uber rate limit of 1,000 API requests per hour per account,

we sub-sampled one ride between each pair of zones in the city

every 15 minutes. We implicitly assume that price estimates, travel

times, and distance of preferred travel paths by drivers do not vary

significantly in 15 minutes. Every 5 minutes, we also queried the

surge multiplier active within each zone.
5
Using this approach, we

collected data from the Uber API for a 6-month period (Oct. 2016–

Mar 2017), recreating rides that originally occurred from Oct. 2015

to Mar 2016. Thus, we built realistic estimates for r (i, j) and τ (i, j)
for all pairs of zones

6
. Finally, we maintained same-day of week

estimates, so that, for example, travel time estimates and rewards

computed for Sunday, Oct 16, 2016, were paired with frequency

estimates drawn from the NYC taxi rides dataset for Sunday, Oct.

18, 2015. In the remainder of this section, we provide results for

driving during one representative week in October. Our results do

not vary qualitatively across different weeks, with the exception of

seasonal peak days, such as New Year’s Eve.

6.2 Experimental results

For all our experiments we use a single process implementation of

our algorithms on a 24-core 2.9GHz Intel Xeon E5 processor with

512GB memory. Running time for naive and relocation is less than

a minute, and about 5 minutes for flexible and flexible-relocation.
Uncertainty analysis (Section 6.4) with an off-the-shelf minimizer

takes around 3 hours. Our code has been made publicly available

in order to encourage reproducible research [5].

Comparison of strategies: First, we address the question: what is
the best driver strategy? Intuitively, it is clear that flexible-relocation
is the best strategy, as it takes advantage of spatial as well as tem-

poral variations in the passenger demand across NYC. In order to

verify this intuition, we compare driver earnings across different

strategies. Drivers following the naive and the relocation strategies

are assumed to drive from 9 AM to 5 PM, a standard 8 hour workday,

5
Chen et al. [6] have observed that 90% of the surges on Uber platform have durations

lasting multiples of 5 minutes.

6
We take into account the Uber fee structure in NYC as reported by the Uber API,

as well as the overall cost per mile estimates provided by the American Automobile

Association (AAA) in order to build realistic estimates for r (i, j).

while those following the flexible or the flexible-relocation strategies
drive for a total of 8 hours each day with a flexible schedule.

In order to evaluate the performance of our strategies, we find the

solution to MaxEarnings and simulate 100 drivers, each randomly

assigned a home zone, operating on these strategies on the same

day of the following week, for a total of 10 weeks. Figure 2 presents

a box-plot of the resulting earnings.
7
.

We observe that all “smart” strategies consistently outperform

naive; as expected. On most days, flexible-relocation is the strategy

with the highest earnings. The median earning of a driver follow-

ing the naive strategy on a Sunday is $104 while that of a driver

following flexible-relocation is $177, representing a 70% increase in

median earnings. Averaged over all days of the week, this results

in a 47% increase in median earnings per work day when following

the flexible-relocation strategy. Thus, our strategies do exploit the

spatial and the temporal variation in demand across NYC. The re-

sults also show that for a part-time Uber driver in NYC, it is more

beneficial to drive midweek, fromWednesday to Friday, and Sunday

than during Saturday and Monday.

Spatial dynamics of strategies: Next, we address the question -

what are the benefits of the Relocate action? Figure 1 already shows

the spatial variation in the demand across different NYC zones at

different times of the day. Intuitively, this spatial variation can cause

a disparity in the driver earnings based on the zone of the driver.

For example, drivers based in Manhattan should be expected to

earn more than those based in Brooklyn due to persistently higher

demand in Manhattan. Similarly, Figure 2 shows temporal variation

in earnings across days of the week. We observe that on the days

of low-demand, not only are the median earnings for relocation
consistently higher than those for naive but also the inter-quartile

range (IQR) and the length of whiskers for relocation are narrower.

On days with high but localized demand like Fridays, the relocation
strategy performs on par with the flexible-relocation strategy and

significantly outperforms naive.
These observations indicate that the location-based disparity

in earnings for the naive strategy is much larger than the reloca-
tion strategy. Thus, we conclude that smart relocations throughout

the day prevent a driver from becoming “trapped” in low-earning

neighborhoods, translating into significant increases in the earn-

ings. This may be counterintuitive to some drivers, as a Relocate
action (essentially an empty ride) incurs a cost to the driver. Yet, the

results demonstrate that these actions, when timed appropriately,

lead to earnings far higher than the costs they incur.

Temporal dynamics of strategies: Intuitively, due to the period-

icity of demand, we expect driver earnings to strongly depend on

the time of the day they are driving. Thus, we address the ques-

tion: what is the best time of the day to drive in order to maximize
earnings? To answer this, we simulate 1000 drivers, each randomly

assigned a home zone, for each of the flexible and flexible-relocation
strategies. We solve the MaxEarnings problem for both strategies

and create a recommended plan of action for the simulated drivers.

Then, at every step of the simulation, a driver undertakes the per-

sonalized action recommended by the strategy, corresponding to

their location, the time of day and their budget remaining.

7
The lower and upper edges of the boxes in Figure 2 indicate quartiles Q1 and Q3

respectively, and length of whisker is 1.5 times IQR.

0

100

200

300

400

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

E
ar

ni
ng

s
($

 /
w

or
kd

ay
) naive relocation flexible flexible−relocation

Figure 2: Daily driver earnings for different strategies averaged over different home zones on a representative day.

0

200

400

600

800

West Side Midtown East Side Midtown South Financial District Queens Brooklyn

re

lo
ca

tio
ns

relocation flexible−relocation

Figure 3: Contrast between preferred relocation destinations for drivers with relocation and flexible-relocation strategies on a

representative day.

0.00

0.25

0.50

0.75

1.00

1AM 4AM 7AM 10AM 1PM 4PM 7PM 10PM

%
 A

ct
iv

e
D

riv
er

s flexible flexible−relocation

Figure 4: Active drivers with flexible and flexible-relocation
strategies at different times of a representative day.

In Figure 4, we plot the percentage of simulated drivers driving

in the city at different times of the day. We observe a noticeable

difference between the “preferred” driving schedules output by

flexible and flexible-relocation. In particular, a high percentage of

flexible schedule drivers are active during the standard working

hours of the day from 9AM to 6PM. This also supports our choice

to evaluate fixed schedule strategies in the interval 9AM to 5PM. In

contrast, the number of active drivers that follow flexible-relocation
exhibits two distinct peaks, corresponding to the morning and the

evening rush hours. Furthermore, over 50% of flexible-relocation
drivers use their driving budget in the latter half of the day starting

approximately at 3PM, continuing through until midnight. Since

flexible and flexible-relocation only differ in the Relocate action, all
observed differences are due to this action. Hence, we can conclude

that the Relocate action is most effective in the evening hours,

thereby prompting higher active percentages of flexible-relocation
drivers at that time.

Preferred relocation zones: By simulating drivers, we can also

compare the Relocate actions between drivers following the reloca-
tion strategy and those following the flexible-relocation strategy. The

Morning 8AM Evening 5PM

1.0

1.2

1.4

1.6

Surge
multiplier

Figure 5: Active surge multiplier across NYC zones at differ-

ent times of a representative day.

contrast between popular destinations of Relocate actions for drivers
following the two strategies can be seen in Figure 3. Drivers follow-

ing the relocation strategy predominantly relocate themselves to the

center of Manhattan. In contrast, the drivers following the flexible-
relocation strategy do not exhibit a clear most-preferred relocation

destination. Furthermore, the number of relocations performed by

the relocation strategy drivers, is, surprisingly, significantly higher

than those performed by the flexible-relocation strategy drivers.

This is due to the flexible work schedule of the latter, which allows

them to drive continuously during the hours of highest demand,

reducing the frequency of Relocate actions they take.

6.3 Surge chasing

We now turn our attention to surge pricing. Surge pricing is a fea-

ture of the Uber platform aimed at matching supply with passenger

demand by increasing prices at times of high demand.According to

Uber, it incentivizes drivers to start driving during the peak hours in

order to efficiently meet demand with supply, albeit at a higher cost

100

200

naive relocation flexible flexible−relocation

E
ar

ni
ng

s
($

 /
w

or
kd

ay
) No surge Surge Surge Chasing

Figure 6: Exploring surge: Simulated earnings for drivers

across different strategies on a representative day.

to passengers. It also decreases demand, since more price-sensitive

customers drop out, as surge prices rise.

Figure 5 shows the active surge multiplier across different neigh-

borhoods of NYC at different times of the day. This information is

readily available to the drivers; however, due to uncertainty in the

duration of surges as well as the proprietary nature of Uber’s surge

pricing algorithm, it is unclear whether drivers should relocate

themselves to surging areas in order to maximize their earnings.

Next, we address the question– Should drivers engage in surge
chasing? In order to do so, we evaluate earnings of simulated drivers

in three scenarios viz., “no surge” - where we disable the surge mul-

tiplier to compute earnings; “surge” - where the multiplier is used

while calculating earnings; and “surge chasing” - wherein a driver

located in a non-surging zone always relocates to the zone with

highest surge multiplier within a 10-minute drive radius. Simulated

driver earnings in these three scenarios for each of the strategies

are shown in Figure 6. We observe that blind “surge chasing” leads

to lower earnings irrespective of the strategy being followed. Figure

6 reinforces our previous observation regarding the high variance

of the naive strategy. At times, drivers following the naive strat-
egy with surge multiplier enabled may earn less than when it is

disabled. For other strategies, “surge chasing” consistently fails to

provide any tangible benefits as compared to following the pre-

determined strategy. We conclude that actively and blindly chasing

the surge is an ill-advised strategy and may lead to losses. Further-

more, surges last for short durations, and an unsuccessful surge

chase may land a driver in a sub-optimal location with respect to

longer term earnings. Note that although the NYC taxi demand data

strongly correlates with active surge multipliers, we do currently

model the impact of surge multiplier on consumer demand. This

should be considered a limitation of our study.

6.4 Effect of uncertainty

Our experiments indicate that our strategies always outperform a

naive strategy that is likely prevalent among Uber drivers. However,

all our strategies use historical data. Consequently, our results can

potentially be sensitive to perturbations of the empirically-observed

transition matrices. Thus, we can only conclude that our results

are robust if the drivers following one of the relocation, flexible
and flexible-relocation strategies have higher earnings than those

following naive, even when the input data is perturbed.

Hence, the question we have to address is the following: Are the
conclusions we drew above robust to perturbations of the empirical
transition matrices? We do so using the framework we developed

in Section 5: we solve the RobustEarnings problem for each of

the four strategies for increasing levels of uncertainty (α) using the
Sequential Least Squares Programming (SLSQP) minimizer imple-

mentation provided by Jones et al. [11].
Figure 7 shows the effect of increasing uncertainty on the earn-

ings of drivers for each of the four strategies. We observe two main

takeaways. First, we find that all strategies suffer a loss under small

amounts of uncertainty, even at levels of α in the range of 0.02,

so all strategies are tuned closely to the empirical data. However,

all strategies then remain resilient to a wide range of additional

uncertainty, and we find that the relocation, flexible and flexible-
relocation strategies are most tolerant to uncertainty in the input

transition matrices. Interestingly, even with 99% uncertainty, the

flexible-relocation strategy significantly outperforms the naive strat-
egy with no uncertainty. This observation further supports our

claim that being strategic using historical data can significantly

improve driver earnings in on-demand ride-hailing platforms.

●

●
●●●●●●●●●●

100

200

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uncertainty level (α)

E
ar

ni
ng

s
($

 /
w

or
kd

ay
)

●naive relocation flexible flexible−relocation

Figure 7: Sensitivity to uncertainty in parameters.

7 CONCLUSIONS

In this paper, we focused on the problem of maximizing a driver’s

individual earnings on ride-hailing platforms like Uber or Lyft.

Our work confirms the power of strategic driving behavior using

data-driven projections of ridership in the NYC area. Our first key

takeaway is that a naive driver, armed with no data, and driving a

9-5 random walk schedule, is leaving roughly a 50% pay raise on

the table by not driving more strategically. In contrast, a data-savvy

driver armed with good historical data can build a forecast and

optimal contingency driving plans with relatively little computa-

tional overhead using our dynamic programming algorithms, that

have provable resilience to input uncertainty. Our experimental

results yield insights into the structure of highly-optimized sched-

ules, including relatively frequent relocation, working at specific

peak periods, and taking advantage of surges when the time is ripe.

An obvious limitation of our work is that it is tailored to the set-

ting when the methods are employed by self-interested individuals.

If a significant percentage of the labor supply employs sophisti-

cated optimization methods for driving, one would need to consider

different strategies that achieve equilibria or other global objectives.

Indeed, in the long run, as drivers for ride-hailing platforms like

Uber and Lyft are put out of work by fleets of autonomous vehicles,

the formulation and solution of new sets of optimization problems

along those lines are likely to become relevant as well.

Acknowledgments: This work was supported by NSF awards: CA-

REER 1253393 and III 1421759. The authors also thank the anony-

mous reviewers for their helpful comments.

REFERENCES

[1] William A. Bailey Jr. and Thomas D. Clark Jr. 1987. A simulation analysis of

demand and fleet size effects on taxicab service rates. In Proceedings of the 19th
Conference on Winter Simulation. ACM, 838–844.

[2] Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. 2015. Pricing in Ride-

Sharing Platforms: A Queueing-Theoretic Approach. https://dl.acm.org/citation.

cfm?id=2764527. Abstract appeared in ACM EC-2015.

[3] Colin Camerer, Linda Babcock, George Loewenstein, and Richard Thaler. 1997.

Labor Supply of New York City Cabdrivers: One day at a Time. The Quarterly
Journal of Economics 112, 2 (1997), 407–441.

[4] Juan Camilo Castillo, Dan Knoepfle, and Glen Weyl. 2017. Surge pricing solves

the wild goose chase. In Proceedings of the 2017 ACM Conference on Economics
and Computation. ACM, 241–242.

[5] Harshal A. Chaudhari, John W. Byers, and Evimaria Terzi. 2017. Project Web-

page: Putting Data in the Driver’s Seat. https://www.bu.edu/cs/groups/dblab/

ride-hailing. (2017).

[6] Le Chen, Alan Mislove, and Christo Wilson. 2015. Peeking beneath the hood

of Uber. In Proceedings of the 2015 ACM Internet Measurement Conference. ACM,

495–508.

[7] M Keith Chen and Michael Sheldon. 2016. Dynamic Pricing in a

Labor Market: Surge Pricing and Flexible Work on the Uber Plat-

form. http://www.anderson.ucla.edu/faculty_pages/keith.chen/papers/

SurgeAndFlexibleWork_WorkingPaper.pdf. Working paper. Abstract appeared

in ACM EC-2016.

[8] The Rideshare Guy. 2016. Advice For New Uber Drivers-

Don’t Chase The Surge! http://maximumridesharingprofits.com/

advice-new-uber-drivers-dont-chase-surge/. (2016).

[9] Jonathan V. Hall and Alan B. Krueger. 2016. An Analysis of the Labor Market
for Uber’s Driver-Partners in the United States. Technical Report No. w22843.

National Bureau of Economic Research.

[10] Waster Hudson. 2016. Chasing the Surge: 3 Tips for Maxi-

mizing Uber Earnings. https://pjmedia.com/lifestyle/2016/07/19/

chasing-the-surge-3-tips-for-maximizing-uber-earnings/1/. (2016).

[11] Eric Jones, Travis Oliphant, Pearu Peterson, and others. 2001–2017. SciPy: Open

source scientific tools for Python. (2001–2017). http://www.scipy.org/

[12] Jaeyoung Jung, R. Jayakrishnan, and Ji Young Park. 2013. Design and Modeling

of Real-time Shared-taxi Dispatch Algorithms. In Proc. Transportation Research
Board 92nd Annual Meeting.

[13] S. Kullback, M. Kupperman, and H. H. Ku. 1962. Tests for Contingency Tables

and Markov Chains. Technometrics 4, 4 (1962), 573–608.
[14] Michal Maciejewski and Kai Nagel. 2013. Simulation and dynamic optimization

of taxi services in MATSim. VSP Working Paper 13-0. TU Berlin, Transport Systems
Planning and Transport Telematics, 2013 (2013).

[15] Arnab Nilim and Laurent El Ghaoui. 2004. Robustness in Markov decision

problems with uncertain transition matrices. In Advances in Neural Information
Processing Systems. 839–846.

[16] Jorge Nunes, Luís Matos, and António Trigo. 2011. Taxi Pick-Ups Route Opti-

mization Using Genetic Algorithms. Adaptive and Natural Computing Algorithms
(2011), 410–419.

[17] Erhun Ozkan and Amy R. Ward. 2016. Dynamic Matching for Real-time Rideshar-

ing. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2844451, (2016). Work-

ing paper.

[18] Ying Shi and Zhaotong Lian. 2016. Optimization and strategic behavior in a

passenger–taxi service system. European Journal of Operational Research 249, 3

(2016), 1024–1032.

[19] The New York Times. 2015. An App That Helps Drivers Earn the

Most From Their Trips. https://www.nytimes.com/2015/05/10/technology/

a-dashboard-management-consultant.html. (2015).

[20] The New York Times. 2017. How Uber Uses Psychological Tricks to Push Its

Drivers’ Buttons. https://www.nytimes.com/interactive/2017/04/02/technology/

uber-drivers-psychological-tricks.html. (2017).

[21] Wikipedia. 2017. Skellam distribution — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Skellam_distribution. (2017).

[22] Hai Yang, Sze Chun Wong, and Ki Wong. 2002. Demand–supply equilibrium

of taxi services in a network under competition and regulation. Transportation
Research Part B: Methodological 36, 9 (2002), 799–819.

https://dl.acm.org/citation.cfm?id=2764527
https://dl.acm.org/citation.cfm?id=2764527
https://www.bu.edu/cs/groups/dblab/ride-hailing
https://www.bu.edu/cs/groups/dblab/ride-hailing
http://www.anderson.ucla.edu/faculty_pages/keith.chen/papers/SurgeAndFlexibleWork_WorkingPaper.pdf
http://www.anderson.ucla.edu/faculty_pages/keith.chen/papers/SurgeAndFlexibleWork_WorkingPaper.pdf
http://maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-surge/
http://maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-surge/
https://pjmedia.com/lifestyle/2016/07/19/chasing-the-surge-3-tips-for-maximizing-uber-earnings/1/
https://pjmedia.com/lifestyle/2016/07/19/chasing-the-surge-3-tips-for-maximizing-uber-earnings/1/
http://www.scipy.org/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2844451
https://www.nytimes.com/2015/05/10/technology/a-dashboard-management-consultant.html
https://www.nytimes.com/2015/05/10/technology/a-dashboard-management-consultant.html
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html
https://en.wikipedia.org/w/index.php?title=Skellam_distribution

	Abstract
	1 Introduction
	2 Related Work
	3 Problem setup
	3.1 Modeling the city
	3.2 Modeling the driver
	3.3 Computing driver earnings
	3.4 Problem definition

	4 Driver strategies and optimization algorithms
	5 Maximizing earnings under uncertainty
	6 Data and Experiments
	6.1 Data collection and preparation
	6.2 Experimental results
	6.3 Surge chasing
	6.4 Effect of uncertainty

	7 Conclusions
	References

